Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
EClinicalMedicine ; 70: 102530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38510373

ABSTRACT

Background: Growth faltering is well-recognized during acute childhood illness and growth acceleration during convalescence, with or without nutritional therapy, may occur. However, there are limited recent data on growth after hospitalization in low- and middle-income countries. Methods: We evaluated growth following hospitalization among children aged 2-23 months in sub-Saharan Africa and South Asia. Between November 2016 and January 2019, children were recruited at hospital admission and classified as: not-wasted (NW), moderately-wasted (MW), severely-wasted (SW), or having nutritional oedema (NO). We describe earlier (discharge to 45-days) and later (45- to 180-days) changes in length-for-age [LAZ], weight-for-age [WAZ], mid-upper arm circumference [MUACZ], weight-for-length [WLZ] z-scores, and clinical, nutritional, and socioeconomic correlates. Findings: We included 2472 children who survived to 180-days post-discharge: NW, 960 (39%); MW, 572 (23%); SW, 682 (28%); and NO, 258 (10%). During 180-days, LAZ decreased in NW (-0.27 [-0.36, -0.19]) and MW (-0.23 [-0.34, -0.11]). However, all groups increased WAZ (NW, 0.21 [95% CI: 0.11, 0.32]; MW, 0.57 [0.44, 0.71]; SW, 1.0 [0.88, 1.1] and NO, 1.3 [1.1, 1.5]) with greatest gains in the first 45-days. Of children underweight (<-2 WAZ) at discharge, 66% remained underweight at 180-days. Lower WAZ post-discharge was associated with age-inappropriate nutrition, adverse caregiver characteristics, small size at birth, severe or moderate anaemia, and chronic conditions, while lower LAZ was additionally associated with household-level exposures but not with chronic medical conditions. Interpretation: Underweight and poor linear growth mostly persisted after an acute illness. Beyond short-term nutritional supplementation, improving linear growth post-discharge may require broader individual and family support. Funding: Bill & Melinda Gates FoundationOPP1131320; National Institute for Health ResearchNIHR201813.

2.
Pathogens ; 12(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003817

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of pediatric morbidity and mortality. Young children are at high risk of TB following Mtb exposure, and this vulnerability is secondary to insufficient host immunity during early life. Our primary objective was to compare CD4+ and CD8+ T-cell production of proinflammatory cytokines IFN-gamma, IL-2, and TNF-alpha in response to six mycobacterial antigens and superantigen staphylococcal enterotoxin B (SEB) between Ugandan adults with confirmed TB (n = 41) and young Ugandan children with confirmed (n = 12) and unconfirmed TB (n = 41), as well as non-TB lower respiratory tract infection (n = 39). Flow cytometry was utilized to identify and quantify CD4+ and CD8+ T-cell cytokine production in response to each mycobacterial antigen and SEB. We found that the frequency of CD4+ and CD8+ T-cell production of cytokines in response to SEB was reduced in all pediatric cohorts when compared to adults. However, T-cell responses to Mtb-specific antigens ESAT6 and CFP10 were equivalent between children and adults with confirmed TB. In contrast, cytokine production in response to ESAT6 and CFP10 was limited in children with unconfirmed TB and absent in children with non-TB lower respiratory tract infection. Of the five additional mycobacterial antigens tested, PE3 and PPE15 were broadly recognized regardless of TB disease classification and age. Children with confirmed TB exhibited robust proinflammatory CD4+ and CD8+ T-cell responses to Mtb-specific antigens prior to the initiation of TB treatment. Our findings suggest that adaptive proinflammatory immune responses to Mtb, characterized by T-cell production of IFN-gamma, IL-2, and TNF-alpha, are not impaired during early life.

3.
Front Immunol ; 14: 1334205, 2023.
Article in English | MEDLINE | ID: mdl-38259490

ABSTRACT

Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.


Subject(s)
Fatty Acids , Neutrophils , Animals , Cell Movement , Glucose , Life Cycle Stages
4.
Gates Open Res ; 6: 77, 2022.
Article in English | MEDLINE | ID: mdl-36415883

ABSTRACT

Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725.

5.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079736

ABSTRACT

Background: Current guidelines for the management of childhood wasting primarily focus on the provision of therapeutic foods and the treatment of medical complications. However, many children with wasting live in food-secure households, and multiple studies have demonstrated that the etiology of wasting is complex, including social, nutritional, and biological causes. We evaluated the contribution of household food insecurity, dietary diversity, and the consumption of specific food groups to the time to recovery from wasting after hospital discharge. Methods: We conducted a secondary analysis of the Childhood Acute Illness Network (CHAIN) cohort, a multicenter prospective study conducted in six low- or lower-middle-income countries. We included children aged 6−23 months with wasting (mid-upper arm circumference [MUAC] ≤ 12.5 cm) or kwashiorkor (bipedal edema) at the time of hospital discharge. The primary outcome was time to nutritional recovery, defined as a MUAC > 12.5 cm without edema. Using Cox proportional hazards models adjusted for age, sex, study site, HIV status, duration of hospitalization, enrollment MUAC, referral to a nutritional program, caregiver education, caregiver depression, the season of enrollment, residence, and household wealth status, we evaluated the role of reported food insecurity, dietary diversity, and specific food groups prior to hospitalization on time to recovery from wasting during the 6 months of posthospital discharge. Findings: Of 1286 included children, most participants (806, 63%) came from food-insecure households, including 170 (13%) with severe food insecurity, and 664 (52%) participants had insufficient dietary diversity. The median time to recovery was 96 days (18/100 child-months (95% CI: 17.0, 19.0)). Moderate (aHR 1.17 [0.96, 1.43]) and severe food insecurity (aHR 1.14 [0.88, 1.48]), and insufficient dietary diversity (aHR 1.07 [0.91, 1.25]) were not significantly associated with time to recovery. Children who had consumed legumes and nuts prior to diagnosis had a quicker recovery than those who did not (adjusted hazard ratio (aHR): 1.21 [1.01,1.44]). Consumption of dairy products (aHR 1.13 [0.96, 1.34], p = 0.14) and meat (aHR 1.11 [0.93, 1.33]), p = 0.23) were not statistically significantly associated with time to recovery. Consumption of fruits and vegetables (aHR 0.78 [0.65,0.94]) and breastfeeding (aHR 0.84 [0.71, 0.99]) before diagnosis were associated with longer time to recovery. Conclusion: Among wasted children discharged from hospital and managed in compliance with wasting guidelines, food insecurity and dietary diversity were not major determinants of recovery.


Subject(s)
Child, Hospitalized , Food Supply , Africa South of the Sahara , Asia , Child , Food Insecurity , Humans , Infant , Prospective Studies , Vegetables
6.
Front Immunol ; 13: 867937, 2022.
Article in English | MEDLINE | ID: mdl-35371104

ABSTRACT

Despite advances in antiretroviral therapy, chronic immune activation continues to be observed among individuals with well-controlled HIV viral loads, and is associated with non-AIDS defining morbidities among people living with HIV. Alcohol use disorder impacts a significant proportion of individuals living with HIV, and alcohol exposure is known to damage the intestinal epithelium which may increase translocation of pathogens and their molecular products, driving systemic immune activation and dysregulation. The aim of this study was to determine if adults living with HIV with well-controlled viral loads, who also suffer from alcohol use disorder with and without hepatitis C virus co-infection (n=23), exhibit evidence of advanced systemic immune activation, intestinal damage, and microbial translocation, as compared to adults living with HIV who are not exposed to chronic alcohol or other substances of abuse (n=29). The impact of a 1-month intervention to treat alcohol-use disorder was also examined. Alcohol-use disorder was associated with evidence of advanced innate immune activation, alterations in monocyte phenotype including increased expression of Toll-like receptor 4, increased burden of stimulatory ligands for Toll-like receptor 4, and alterations in plasma cytokine signature, most notably elevations in soluble CD40 ligand and transforming growth factor beta. Alcohol-associated immune activation was more pronounced among individuals with hepatitis C virus co-infection. Although the 1-month intervention to treat alcohol use disorder did not result in significant reductions in the interrogated indicators of immune activation, our findings suggest that chronic alcohol exposure is a major modifiable risk factor for chronic immune activation and dysregulation among people-living with HIV.


Subject(s)
Alcoholism , Coinfection , HIV Infections , Hepatitis C , Alcoholism/complications , Alcoholism/metabolism , Cytokines/metabolism , Hepacivirus/metabolism , Humans , Immunity, Innate , Monocytes , Phenotype , Toll-Like Receptor 4/metabolism
7.
Front Immunol ; 12: 748996, 2021.
Article in English | MEDLINE | ID: mdl-35185860

ABSTRACT

Severely ill children in low- and middle-income countries (LMICs) experience high rates of mortality from a broad range of infectious diseases, with the risk of infection-related death compounded by co-existing undernutrition. How undernutrition and acute illness impact immune responses in young children in LMICs remains understudied, and it is unclear what aspects of immunity are compromised in this highly vulnerable population. To address this knowledge gap, we profiled longitudinal whole blood cytokine responses to Toll-like receptor (TLR) ligands among severely ill children (n=63; 2-23 months old) with varied nutritional backgrounds, enrolled in the CHAIN Network cohort from Kampala, Uganda, and Kilifi, Kenya, and compared these responses to similar-aged well children in local communities (n=41). Cytokine responses to ligands for TLR-4 and TLR-7/8, as well as Staphylococcus enterotoxin B (SEB), demonstrated transient impairment in T cell function among acutely ill children, whereas innate cytokine responses were exaggerated during both acute illness and following clinical recovery. Nutritional status was associated with the magnitude of cytokine responses in all stimulated conditions. Among children who died following hospital discharge or required hospital re-admission, exaggerated production of interleukin-7 (IL-7) to all stimulation conditions, as well as leukopenia with reduced lymphocyte and monocyte counts, were observed. Overall, our findings demonstrate exaggerated innate immune responses to pathogen-associated molecules among acutely ill young children that persist during recovery. Heightened innate immune responses to TLR ligands may contribute to chronic systemic inflammation and dysregulated responses to subsequent infectious challenges. Further delineating mechanisms of innate immune dysregulation in this population should be prioritized to identify novel interventions that promote immune homeostasis and improve outcomes.


Subject(s)
Acute Disease , Malnutrition , Toll-Like Receptors , Child, Preschool , Cytokines , Humans , Immunity, Innate , Infant , Ligands , Uganda/epidemiology
8.
Nat Commun ; 11(1): 5406, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106495

ABSTRACT

Mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) cause Blau syndrome, an inflammatory disorder characterized by uveitis. The antimicrobial functions of Nod2 are well-established, yet the cellular mechanisms by which dysregulated Nod2 causes uveitis remain unknown. Here, we report a non-conventional, T cell-intrinsic function for Nod2 in suppression of Th17 immunity and experimental uveitis. Reconstitution of lymphopenic hosts with Nod2-/- CD4+ T cells or retina-specific autoreactive CD4+ T cells lacking Nod2 reveals a T cell-autonomous, Rip2-independent mechanism for Nod2 in uveitis. In naive animals, Nod2 operates downstream of TCR ligation to suppress activation of memory CD4+ T cells that associate with an autoreactive-like profile involving IL-17 and Ccr7. Interestingly, CD4+ T cells from two Blau syndrome patients show elevated IL-17 and increased CCR7. Our data define Nod2 as a T cell-intrinsic rheostat of Th17 immunity, and open new avenues for T cell-based therapies for Nod2-associated disorders such as Blau syndrome.


Subject(s)
Nod2 Signaling Adaptor Protein/immunology , Th17 Cells/immunology , Uveitis/immunology , Uveitis/prevention & control , Animals , Arthritis/genetics , Arthritis/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/genetics , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Sarcoidosis , Synovitis/genetics , Synovitis/immunology , Uveitis/genetics
9.
AIDS ; 34(2): 177-188, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31687981

ABSTRACT

BACKGROUND: Opioid-use disorders (OUD) and hepatitis C or B co-infection (HEP) are common among people living with HIV (PLHIV). The impact of OUD on innate and adaptive immunity among PLHIV with and without HEP is unknown. OBJECTIVES: To investigate the impact of OUD on monocyte and T-cell phenotypes, cytokine responses to lipopolysaccharide (LPS) and phytohemagglutinin (PHA), and plasma inflammatory markers, among PLHIV with and without HEP. METHODS: Cross-sectional study enrolling PLHIV receiving ART, with and without OUD. Flow cytometry determined monocyte and T-cell phenotypes; LPS and PHA-induced cytokine production was assessed following LPS and PHA stimulation by multiplex cytokine array; plasma IL-6, soluble CD163, and soluble CD14 were measured by ELISA. RESULTS: Twenty-two PLHIV with OUD and 37 PLHIV without OUD were included. PLHIV with OUD exhibited higher frequencies of intermediate (CD14CD16) and nonclassical (CD14CD16) monocytes when compared with PLHIV without OUD (P = 0.0025; P = 0.0001, respectively), regardless of HEP co-infection. Soluble CD163 and monocyte cell surface CD163 expression was increased among PLHIV with OUD and HEP, specifically. Regardless of HEP co-infection, PLHIV with OUD exhibited reduced production of IL-10, IL-8, IL-6, IL-1alpha, and TNF-alpha in response to LPS when compared with PLHIV without OUD; PHA-induced production of IL-10, IL-1alpha, IL-1beta, IL-6, and TNF-alpha were also reduced among individuals with OUD. CONCLUSION: OUD among PLHIV are associated with altered monocyte phenotypes and a dysregulated innate cytokine response. Defining underlying mechanisms of opioid-associated innate immune dysregulation among PLHIV should be prioritized to identify optimal OUD treatment strategies.


Subject(s)
Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , Cytokines/metabolism , HIV Infections/metabolism , Monocytes/metabolism , Opioid-Related Disorders/metabolism , Receptors, Cell Surface/blood , Adult , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers/metabolism , Cross-Sectional Studies , Female , Flow Cytometry , HIV Infections/blood , Humans , Interleukin-10/metabolism , Interleukin-1beta , Male , Middle Aged , Opioid-Related Disorders/blood , Randomized Controlled Trials as Topic , Receptors, Cell Surface/metabolism , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/metabolism
10.
Crit Rev Immunol ; 38(1): 1-15, 2018.
Article in English | MEDLINE | ID: mdl-29717661

ABSTRACT

During the period of transition from intrauterine to extrauterine life, the neonatal immune system must learn to rapidly identify pathogens while balancing pro-inflammatory, antimicrobial responses with immune regulation that allows for resolution of inflammation and limits responses to commensal organisms and benign environmental antigens. However, the naive immune system of neonates is presented with several barriers that limit robust proinflammatory immune responses. Specifically, epigenetic modifications to neonatal naive CD4+ T cells, heightened neonatal regulatory T cell frequency and function, and limitations in the co-stimulatory potential of neonatal antigen presenting cells restrict development of CD4+ T cells with a T-helper 1 type functional profile. This restriction likely contributes to the increased risk of severe infection observed during early life. New research, however, suggests that neonates are capable of utilizing unique compensatory mechanisms to circumvent these restrictions and generate T-helper 1 type immunity under some circumstances. Understanding how to manipulate the immune responses of young infants to optimize development of T-helper 1 type immunity is key to the development of immune-based treatments and prevention strategies for severe infections in this vulnerable population.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Infant, Newborn/immunology , Lymphocyte Activation , Th1 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , Humans , Th1 Cells/cytology
11.
Am J Epidemiol ; 187(7): 1477-1489, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29304247

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major public health problem. Household contact studies identify children and adults along the spectrum from Mtb exposure to disease. In the Kawempe Community Health Study (conducted in Kampala, Uganda), 872 culture-confirmed pulmonary TB cases and their 2,585 contacts were enrolled during 2002-2012 and followed for up to 2 years each. Risk factors identified by time-to-event analysis for secondary TB differed among children, women, and men. Younger age (P = 0.0061), human immunodeficiency virus (HIV) (P = 0.0002), thinness (P = 0.01), absent bacille Calmette-Guérin vaccination (P = 0.002), and epidemiologic risk score (P < 0.0001) were risks for children. For women, risks were HIV (P < 0.0001), thinness (World Health Organization criteria; P < 0.0001), and epidemiologic risk score (P = 0.003). For men, HIV (P = 0.0007) and low body mass index (P = 0.008) resulted in faster progression to TB. Tuberculin skin testing (TST) identified contacts with Mtb infection and those with persistently negative TST. Risks for faster time to Mtb infection were identified, and included age (P = 0.0007), baseline TST induration (P < 0.0001), and epidemiologic risk score (P < 0.0001) only in children. Those with persistently negative TST comprised 10% of contacts but had no unique epidemiologic characteristics among adults. The burden of Mtb infection and disease is high in TB households, and risk factors for progression from exposure to infection and disease differ among children, women, and men.


Subject(s)
Mycobacterium tuberculosis , Tuberculin Test/statistics & numerical data , Tuberculosis, Pulmonary/epidemiology , Adolescent , Adult , Child , Child, Preschool , Disease Resistance , Disease Susceptibility/microbiology , Family Characteristics , Female , HIV , HIV Infections/microbiology , Humans , Latent Tuberculosis/epidemiology , Latent Tuberculosis/microbiology , Male , Middle Aged , Risk Factors , Tuberculosis, Pulmonary/microbiology , Uganda/epidemiology , Young Adult
12.
Afr Health Sci ; 17(4): 954-962, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29937865

ABSTRACT

BACKGROUND: The reconstitution of cellular immune components contributes to clinical outcome of HIV and Mycobacterium tuberculosis (MTB) infection. Interruption of anti-retroviral therapy (ART) could lead to perturbations in reconstitution of T cells in HIV/ tuberculosis (TB) patients. OBJECTIVES: To ascertain the effect of interrupted ART on reconstitution of CD4+ and CD8+ T sub-sets in TB patients. METHODS: Participants with HIV (CD4>350 cells/µL) and TB were recruited under a larger phase 3 open label randomised controlled clinical trial. The CD45RO and CD62L markers were measured on CD4+ and CD8+ cells by flow cytometry. Samples were analysed at baseline, 3, 6, 12 months. RESULTS: There was a significant increase of naive CD8+ cells (p = 0.003) and a decrease in effector CD8+ cells (p = 0.004) among participants in ART/TB treatment arm during the first 6 months. Withdrawing ART led to naive CD8+ cells reduction (p=0.02) to values close to baseline. An increase of naive CD8+ cells after 6 months of TB treatment in TB alone treatment arm (p=0.01) was observed. A trend towards increment of naive CD4+ sub sets in either treatment arms was observed. CONCLUSION: Interrupting ART alters CD8+ but not CD4+ sub-sets in patients with less advanced HIV infection and TB.


Subject(s)
Antitubercular Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/complications , HIV Infections/immunology , Immune Reconstitution Inflammatory Syndrome/etiology , Immunologic Memory/immunology , Tuberculosis, Pulmonary/drug therapy , Viral Load/immunology , Adult , Anti-Retroviral Agents/therapeutic use , CD4 Lymphocyte Count , Female , Flow Cytometry , HIV Infections/drug therapy , Humans , Male , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/immunology
13.
J Immunol ; 197(1): 68-77, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27194790

ABSTRACT

Neonatal CD4(+) T cells have traditionally been viewed as deficient in their capacity to produce Th1 cytokines in response to polyclonal or Ag-specific stimuli. Thus, defining unique aspects of CD4(+) T cell activation and development into Th1 effector cells in neonates is essential to the successful development of novel vaccines and immunotherapies to protect infants from intracellular pathogens. Using highly purified naive CD4(+) T cells derived from cord and adult peripheral blood, we compared the impact of anti-CD3 stimulation plus costimulation through TLR-2 performed in the absence of APC on CD4(+) T cell cytokine production, proliferation, and expression of activation markers. In both age groups, TLR-2 costimulation elicited activation of naive CD4(+) T cells, characterized by robust production of IL-2 as well as key Th1-type cytokines IFN-γ and TNF-α. TLR-2 costimulation also dramatically reduced naive T cell production of the immunosuppressive cytokine IL-10. We observed that neonatal naive CD4(+) T cells are uniquely sensitive to TLR-2-mediated costimulation, which enabled them to produce equivalent amounts of IFN-γ and more IL-2 when compared with adult responses. Thus, neonatal CD4(+) T cells have a distinctive propensity to use TLR-2-mediated costimulation for development into proinflammatory Th1 effectors, and interventions that target CD4(+) T cell TLR-2-mediated responses may be exploited to enhance neonatal adaptive immunity.


Subject(s)
Fetal Blood/immunology , Th1 Cells/immunology , Toll-Like Receptor 2/metabolism , Adolescent , Adult , Aged , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Female , Humans , Infant, Newborn , Inflammation Mediators/metabolism , Lymphocyte Activation , Male , Middle Aged , Young Adult
14.
PLoS One ; 9(5): e96613, 2014.
Article in English | MEDLINE | ID: mdl-24796677

ABSTRACT

RATIONALE: Healthy household contacts (HHC) of individuals with Tuberculosis (TB) with Tuberculin Skin Test (TST) conversions are considered to harbor latent Mycobacterium tuberculosis (Mtb), and at risk for TB. The immunologic, clinical, and public health implications of TST reversions that occur following Isoniazid preventive therapy (IPT) remain controversial. OBJECTIVES: To measure frequency of TST reversion following IPT, and variation in interferon-gamma (IFN-γ) responses to Mtb, in healthy Ugandan TB HHC with primary Mtb infection evidenced by TST conversion. METHODS: Prospective cohort study of healthy, HIV-uninfected, TST-negative TB HHC with TST conversions. Repeat TST was performed 12 months following conversion (3 months following completion of 9 month IPT course) to assess for stable conversion vs. reversion. Whole blood IFN-γ responses to Mtb antigen 85B (MtbA85B) and whole Mtb bacilli (wMtb) were measured in a subset (n = 27 and n = 42, respectively) at enrollment and TST conversion, prior to initiation of IPT. RESULTS: Of 122 subjects, TST reversion was noted in 25 (20.5%). There were no significant differences in demographic, clinical, or exposure variables between reverters and stable converters. At conversion, reverters had significantly smaller TST compared to stable converters (13.7 mm vs 16.4 mm, respectively; p = 0.003). At enrollment, there were no significant differences in IFN-γ responses to MtbA85B or wMTB between groups. At conversion, stable converters demonstrated significant increases in IFN-γ responses to Ag85B and wMtb compared to enrollment (p = 0.001, p<0.001, respectively), while there were no significant changes among reverters. CONCLUSIONS: TST reversion following IPT is common following primary Mtb infection and associated with unique patterns of Mtb-induced IFN-γ production. We have demonstrated that immune responses to primary Mtb infection are heterogeneous, and submit that prospective longitudinal studies of cell mediated immune responses to Mtb infection be prioritized to identify immune phenotypes protective against development of TB disease.


Subject(s)
Antitubercular Agents/therapeutic use , Isoniazid/therapeutic use , Mycobacterium tuberculosis , Tuberculin Test , Tuberculosis/microbiology , Tuberculosis/prevention & control , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Immune System/drug effects , Interferon-gamma/metabolism , Latent Tuberculosis/drug therapy , Latent Tuberculosis/prevention & control , Male , Middle Aged , Phenotype , Prospective Studies , Uganda , Young Adult
15.
Eur J Immunol ; 44(5): 1410-21, 2014 May.
Article in English | MEDLINE | ID: mdl-24497180

ABSTRACT

We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4(+) T cells and upregulate TCR-triggered IFN-γ secretion and cell proliferation in vitro. Here we examined the role of CD4(+) T-cell-expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag-specific T-cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4(+) T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1-like response was observed in the context of both polyclonal and Ag-specific TCR stimulation. To evaluate the role of T-cell TLR2 in priming of CD4(+) T cells in vivo, naive MTB Ag85B-specific TCR transgenic CD4(+) T cells (P25 TCR-Tg) were adoptively transferred into Tlr2(-/-) recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3 Cys-SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN-γ-secreting P25 TCR-Tg T cells 1 week after immunization. P25 TCR-Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4(+) T cells increases MTB Ag-specific responses and may contribute to protection against MTB infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Mycobacterium tuberculosis/immunology , Toll-Like Receptor 2/immunology , Tuberculosis/immunology , Acyltransferases/biosynthesis , Acyltransferases/genetics , Acyltransferases/immunology , Acyltransferases/pharmacology , Animals , Antigens, Bacterial/biosynthesis , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Antigens, Bacterial/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/pharmacology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Chromobox Protein Homolog 5 , Humans , Immunization , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interferon-gamma/immunology , Mice , Mice, Knockout , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Toll-Like Receptor 2/biosynthesis , Toll-Like Receptor 2/genetics , Tuberculosis/genetics , Tuberculosis/metabolism , Tuberculosis/pathology , Tuberculosis/prevention & control
16.
J Leukoc Biol ; 91(2): 311-20, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22158781

ABSTRACT

Mtb regulates many aspects of the host immune response, including CD4+ T lymphocyte responses that are essential for protective immunity to Mtb, and Mtb effects on the immune system are paradoxical, having the capacity to inhibit (immune evasion) and to activate (adjuvant effect) immune cells. Mtb regulates CD4+ T cells indirectly (e.g., by manipulation of APC function) and directly, via integrins and TLRs expressed on T cells. We now report that previously uncharacterized Mtb protein Rv2468c/MT2543 can directly regulate human CD4+ T cell activation by delivering costimulatory signals. When combined with TCR stimulation (e.g., anti-CD3), Rv2468c functioned as a direct costimulator for CD4+ T cells, inducing IFN-γ secretion and T cell proliferation. Studies with blocking antibodies and soluble RGD motifs demonstrated that Rv2468c engaged integrin VLA-5 (α5ß1) on CD4+ T cells through its FN-like RGD motif. Costimulation by Rv2468c induced phosphorylation of FAKs and Pyk2. These results reveal that by expressing molecules that mimic host protein motifs, Mtb can directly engage receptors on CD4+ T cells and regulate their function. Rv2468c-induced costimulation of CD4+ T cells could have implications for TB immune pathogenesis and Mtb adjuvant effect.


Subject(s)
Bacterial Proteins/physiology , CD4-Positive T-Lymphocytes/immunology , Integrin alpha5beta1/physiology , Lymphocyte Activation/immunology , Mycobacterium tuberculosis/physiology , Bacterial Proteins/chemistry , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 2/metabolism , Humans , Immunologic Memory , Integrin alpha5/chemistry , Integrin alpha5beta1/chemistry , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interferon-gamma/metabolism , Oligopeptides , Phosphorylation , Protein Binding , Protein Interaction Mapping , Protein Processing, Post-Translational , Receptors, Antigen, T-Cell/immunology , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Up-Regulation
17.
J Infect Dis ; 203(7): 992-1001, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21402550

ABSTRACT

BACKGROUND: Human immunodeficiency virus (HIV)-tuberculosis coinfection is associated with heightened immune activation, viral replication, and T cell dysfunction. We compared changes in T cell activation and function between patients receiving concurrent treatment for HIV-tuberculosis coinfection and those receiving treatment for tuberculosis alone. METHODS: HIV-infected adults with tuberculosis and CD4(+) T cell counts >350 cells/mm(3) were randomized to receive tuberculosis treatment alone (control arm; n = 36) or 6 months of antiretroviral therapy (ART) concurrent with tuberculosis treatment (intervention arm; n = 38). HIV viral load, T cell subsets, T cell activation, and cytokine production were measured at enrollment and every 3 months for 12 months. RESULTS: Differences in absolute CD4(+) and CD8(+) T cell counts were not observed between arms. Viral load was reduced while participants received ART; control patients maintained viral load at baseline levels. Both arms had significant reductions in T cell expression of CD38 and HLA-DR. Interferon-γ production in response to mitogen increased significantly in the intervention arm. CONCLUSIONS: In HIV-infected adults with tuberculosis and CD4(+) T cell counts >350 cells/mm(3), both tuberculosis treatment and concurrent HIV-tuberculosis treatment reduce T cell activation and stabilize T cell counts. Concurrent ART with tuberculosis treatment does not provide additional, sustained reductions in T cell activation among individuals with preserved immunologic function.


Subject(s)
Anti-HIV Agents/administration & dosage , Antiretroviral Therapy, Highly Active , Antitubercular Agents/administration & dosage , HIV Infections/drug therapy , HIV Infections/immunology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/immunology , Adult , CD4 Lymphocyte Count , Cytokines/metabolism , Female , HIV Infections/complications , Humans , Male , Middle Aged , T-Lymphocyte Subsets/immunology , Treatment Outcome , Tuberculosis, Pulmonary/complications
18.
Infect Immun ; 79(2): 663-73, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21078852

ABSTRACT

The success of Mycobacterium tuberculosis as a pathogen relies on its ability to regulate the host immune response. M. tuberculosis can manipulate adaptive T cell responses indirectly by modulating antigen-presenting cell (APC) function or by directly interacting with T cells. Little is known about the role of M. tuberculosis molecules in direct regulation of T cell function. Using a biochemical approach, we identified lipoproteins LprG and LpqH as major molecules in M. tuberculosis lysate responsible for costimulation of primary human CD4(+) T cells. In the absence of APCs, activation of memory CD4(+) T cells with LprG or LpqH in combination with anti-CD3 antibody induces Th1 cytokine secretion and cellular proliferation. Lipoprotein-induced T cell costimulation was inhibited by blocking antibodies to Toll-like receptor 2 (TLR2) and TLR1, indicating that human CD4(+) T cells can use TLR2/TLR1 heterodimers to directly respond to M. tuberculosis products. M. tuberculosis lipoproteins induced NF-κB activation in CD4(+) T cells in the absence of TCR co-engagement. Thus, TLR2/TLR1 engagement alone by M. tuberculosis lipoprotein triggered intracellular signaling, but upregulation of cytokine production and proliferation required co-engagement of the TCR. In conclusion, our results demonstrate that M. tuberculosis lipoproteins LprG and LpqH participate in the regulation of adaptive immunity not only by inducing cytokine secretion and costimulatory molecules in innate immune cells but also through directly regulating the activation of memory T lymphocytes.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lipoproteins/metabolism , Lymphocyte Activation/physiology , Mycobacterium tuberculosis/metabolism , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism , Acylation , Adult , Cells, Cultured , Gene Expression Regulation , Humans , Immunologic Memory/physiology , Lipoproteins/genetics , Lipoproteins/immunology , Middle Aged , Mycobacterium tuberculosis/immunology , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics , Young Adult
19.
J Immunol Methods ; 344(1): 15-25, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19272393

ABSTRACT

Direct regulation of T cell function by microbial ligands through Toll-like receptors (TLR) is an emerging area of T cell biology. Currently either immunomagnetic cell sorting (IMACS) or fluorescence-activated cell sorting (FACS), are utilized to isolate T-cell subsets for such studies. However, it is unknown to what extent differences in T cell purity between these isolation techniques influence T cell functional assays. We compared the purity, response to mitogen, activation requirements, and response to TLR ligands between human CD4(+) T cells isolated either by IMACS (IMACS-CD4(+)) or by IMACS followed by FACS (IMACS/FACS-CD4(+)). As expected, IMACS-CD4(+) were less pure than IMACS/FACS-CD4(+) (92.5%+/-1.4% versus 99.7%+/-0.2%, respectively). Consequently, IMACS-CD4(+) proliferated and produced cytokines in response to mitogen alone and had lower activation requirements compared to IMACS/FACS-CD4(+). In addition IMACS-CD4(+) but not IMACS/FACS-CD4(+) responses were upregulated by the TLR-4 ligand lipopolysaccharide (LPS). On the other hand, TLR-2 and TLR-5 engagement induced costimulation in both IMACS-CD4(+) and highly purified IMACS-/FACS-CD4(+). Altogether these results indicate that small differences in cell purity can significantly alter T cell responses to TLR ligands. This study stresses the importance of a stringent purification method when investigating the role of microbial ligands in T cell function.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Separation/methods , Flow Cytometry/methods , Toll-Like Receptors/immunology , CD4-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Cysteine/analogs & derivatives , Cysteine/pharmacology , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-2/biosynthesis , Interleukin-2/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Ligands , Lipopolysaccharides/pharmacology , Mitogens/pharmacology , Phytohemagglutinins/pharmacology , Toll-Like Receptors/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...